Самый большой оптический телескоп. Самые большие телескопы на земле

Аресибо - астрономическая обсерватория, расположенная в Пуэрто Рико, в 15 км от города Аресибо, на высоте 497 м над уровнем моря. Ее радиотелескоп является самым большим в мире и используется для исследований в области радиоастрономии, физики атмосферы и радиолокационных наблюдений объектов Солнечной системы. Также информация с телескопа поступает для обработки проектом SETI@home, посредством подключённых к Интернету компьютеров добровольцев. Проект этот, напомним, занимается поиском внеземных цивилизаций.

Помните 10 лет назад был фильм про Джеймса Бонда - "Золотой глаз". Там как раз действия разворачивались на этом телескопе.

Многие наверное подумали что это декорации к фильму. А телескоп к тому моменту уже работал 50 лет

Обсерватория Аресибо находится на высоте 497 метров над уровнем моря. Несмотря на то, что расположена она в Пуэрто Рико, используется и финансируется она всевозможными университетами и агентствами США. Основным предназначением обсерватории является исследование в области радиоастрономии, а также наблюдение за космическими телами. Для этих целей и был построен самый большой в мире радиотелескоп. Диаметр тарелки составляет 304,8 метров.

Глубина тарелки (зеркало рефлектора по научному) сотавляет - 50,9 метров, общая площадь - 73000 м2. Изготовлена она из 38778 перфорированных (дырчатых) алюминиевых пластин, уложенных на сетку из стальных тросов.

Над тарелкой подвешена массивная конструкция, передвижной облучатель и его направляющие. Держится она на 18 тросах, натянутых от трёх башен поддержки.



Если Вы купите входной билет на экскурсию, стоимостью 5$, то получите возможность подняться на облучатель по специальной галерее или в клетке подъёмника.

Строительство радиотелескопа было начато в 1960 году, а уже 1 ноября 1963 года состоялось открытие обсерватории.


За время своего существования, радиотелескоп Аресибо отличился тем, что были открыты несколько новых космических объектов (пульсары, первые планеты за пределами нашей Солнечной системы), лучше исследованы поверхности планет нашей Солнечной системы, а также, в 1974 году было отправлено послание Аресибо, в надежде, что какая-нибудь внеземная цивилизация откликнется на него. Ждёмс.

При проведении этих исследований включается мощный радар и измеряется ответная реакция ионосферы. Антенна такого большого размера является необходимой, потому что на тарелку для измерения попадает лишь малая часть рассеянной энергии. Сегодня только треть времени работы телескопа отведено для изучения ионосферы, треть - для исследования галактик, а оставшаяся треть отдана астрономии пульсаров.

Аресибо, без сомнения, превосходный выбор для поиска новых пульсаров, поскольку огромные размеры телескопа делают поиски более продуктивными, позволяя астрономам находить доселе неизвестные пульсары, которые оказались слишком малы, чтобы быть замеченными при помощи телескопов меньших размеров. Тем не менее, такие размеры имеют и свои недостатки. Например, антенна должна оставаться закрепленной на земле из-за невозможности управлять ей. Вследствие чего телескоп в состоянии охватить только сектор неба, который находится непосредственно над ним на пути вращения земли. Это позволяет Аресибо наблюдать за сравнительно небольшой частью неба, по сравнению с большинством других телескопов, которые могут охватывать от 75 до 90% неба.


Второй, третий и четвертый по величине телескопы, которые используются (или будут использоваться) для исследования пульсаров - это соответственно телескоп Национальной радиоастрономической обсерватории (НРАО) в Западной Вирджинии, телескоп института Макса Планка в Эффельсберге и телескоп Грин-Бэнк НРАО тоже в Западной Вирджинии. Все они имеют диаметр не менее 100 м и полностью управляемы. Несколько лет назад 100-метровая антенна НРАО упала на землю, и сейчас ведутся работы по установке более качественного 105-метрового телескопа.

Это лучшие телескопы для изучения пульсаров, не попадающих в радиус действия Аресибо. Заметьте, что Аресибо втрое больше 100-метровых телескопов, а это значит, что он охватывает площадь в 9 раз большую и достигает результатов научных наблюдений в 81 раз быстрее.

Тем не менее, существует множество телескопов диаметром меньше 100 метров, которые также успешно используются для изучения пульсаров. Среди них Parkes в Австралии и 42-метровый телескоп НРАО.

Большой телескоп может быть заменен совмещением нескольких телескопов меньших размеров. Эти телескопы, точнее, сети телескопов, могут охватывать площадь, равную той, которая охватывается стометровыми антеннами. Одна из таких сетей, созданная для апертурного синтеза, называется Very Large Array. Она насчитывает 27 антенн, каждая 25 метров в диаметре.



Начиная с 1963 года, когда было закончено строительство обсерватории Аресибо в Пуэрто-Рико (Arecibo Observatory in Puerto Rico), радиотелескоп этой обсерватории, диаметром 305 метров и площадью 73000 квадратных метров, был самым большим радиотелескопом в мире. Но вскоре Аресибо может потерять этот статус из-за того, что в провинции Гуйчжоу, расположенной в южной части Китая, начато строительство нового радиотелескопа Five-hundred-meter Aperture Spherical radio Telescope (FAST). По завершению строительства этого телескопа, которое согласно планам должно завершиться в 2016 году, телескоп FAST будет в состоянии "видеть" космос на глубину в три раза больше и производить обработку данных в десять раз быстрее, чем это позволяет оборудование телескопа Аресибо.


Изначально строительство телескопа FAST было намечено для участия в международной программе Square Kilometer Array (SKA), в рамках которой будут объединены сигналы с тысяч антенн радиотелескопов меньших размеров, разнесенных на расстояние 3000 км. Как известно на данный момент , телескоп SKA будет возводиться в южном полушарии, но вот где именно, в Южной Африке или Австралии, будет решено позже.

Несмотря на то, что предложенный проект телескопа FAST не стал частью проекта SKA, китайское правительство дало проекту зеленый свет и выделило финансирование в размере 107,9 миллионов долларов для начала строительства нового телескопа. Строительство было начато в марте месяце, в провинции Гуйчжоу, в южной части Китая.

В отличие от телескопа Аресибо, который имеет неподвижную параболическую систему, фокусирующую радиоволны, кабельная сеть телескопа FAST и система конструкции параболического отражателя позволят телескопу менять форму поверхности отражателя в режиме реального времени с помощью системы активного контроля. Это станет возможным благодаря наличию 4400 треугольных алюминиевых листов, из которых формируется параболическая форма отражателя и которую можно навести на любую точку ночного неба.

Использование специальной современной приемной аппаратуры придаст телескопу FAST беспрецедентно высокую чувствительность и высокие скорости обработки поступающих данных. С помощью антенны телескопа FAST можно будет принять настолько слабые сигналы, что станет возможным "рассматривание" с его помощью нейтральных облаков водорода в Млечном пути и других галактиках. А основными задачами, над которыми будет работать радиотелескоп FAST, будут обнаружение новых пульсаров, поиск новых ярких звезд и поиск внеземных форм жизни.

источники
grandstroy.blogspot.com
relaxic.net
planetseed.com
dailytechinfo.org

10

При фокусном расстоянии в 21 метр этот рефрактор является самым длинным в мире. Вес его подвижной частия составляет 130 тонн!

9 Телескоп-рефрактор Говарда Грубба


В настоящее время в зданиях Гринвичской обсерватории расположен музей астрономических и навигационных инструментов, который является частью Национального морского музея. Одним из уникальных экспонатов музея является 28-дюймовый телескоп-рефрактор Говарда Грубба (англ. Howard Grubb), созданный в 1893 году и остающийся крупнейшим рефрактором в Великобритании.

8

Научная деятельность обсерватории охватывает практически все приоритетные направления фундаментальных исследований современной астрономии: небесная механика и звёздная динамика, астрометрия (геометрические и кинематические параметры Вселенной), Солнце и солнечно-земные связи, физика и эволюция звезд, аппаратура и методика астрономических наблюдений. Закладка обсерватории состоялась в 1835 году. Завершились работы через четыре года в 1839 году. К 50-й годовщине основания в обсерватории была дополнительно создана астрофизическая лаборатория и установлен самый большой на тот момент в мире 76-сантиметровый телескоп-рефрактор Репсольда, построенный фирмой Элвина Кларка.

7

Обсерватория Аллегейни - астрономическая обсерватория, основанная в 1859 году в Питтсбурге, Пенсильвания, США. Обсерватория принадлежит Питтсбургскому университету и входит в состав факультета физики и астрономии. Первоначально обсерватория ставила перед собой задачу популяризации астрономии. После 1867 года обсерватория была передана Университету. 18 ноября 1883 года из обсерватории был подан по телеграфу первый сигнал точного времени для железных дорог США и Канады. Сигнал подавался в полдень по восточному времени. Это время и по сей день используется в службе времени США. Услуга была платная и она окупала все расходы обсерватории до 1920 года, пока Военно-морская обсерватория США не начала давать сигнал времени бесплатно. С 1972 года Джодж Гейтвуд начал использовать обсерваторию для поиска экзопланет астрометрическим методом.

6


76-сантиметровый (30-дюймов) телескоп-рефрактор длиной 18 метров на момент установки в обсерватории (1888 год) был самым большим и мощным телескопом в мире. Этот рекорд был побит спустя всего лишь год телескопом, установленным в Ликской обсерватории. В Ницце было открыто около двух тысяч новых двойных звезд.

5

«Великий рефрактор» расположен в купольном здании (диаметр купола которого составляет 21 метр), специально сооруженном для Потсдамской астрофизической обсерватории. В 2006 году здание было отреставрировано и открыто для посетителей. Телескоп в форме двойного рефрактора по-прежнему находится в рабочем состоянии и используется для научных исследований.

4


Парижская обсерватория была основана в 1667 году по указу короля Франции и Наварры Людовика XIV (обновлённое здание было торжественно открыто им 1 мая 1682) и является старейшей из ныне работающих в мире. Крупнейший инструмент обсерватории - двойной фотовизуальный рефрактор (диаметр объектива визуального рефрактора - 83 см, астрографа - 63 см, фокусное расстояние обоих - 17 метров).

3


Ликская астрономическая обсерватория, одна из первых горных обсерваторий, расположена на склоне горы Гамильтон на высоте 1283 метра, в 46 километрах от города Сан-Хосе и принадлежит Калифорнийскому университету в Санта-Крузе.36 дюймовый (91,44 см) телескоп-рефрактор, установленный в обсерватории, был самым большим телескопом на Земле на протяжении 9 лет.

Местоположение обсерватории обеспечило превосходные условия наблюдения; к тому же, вечерний воздух наверху горы Гамильтона чрезвычайно спокоен, и вершина горы обычно располагается выше уровня облачного покрова, который часто бывает в области Сан-Хосе.

2

В Йеркской обсерватории находится 40-дюймовый (1,02 метра) телескоп-рефрактор, изготовленный фирмой Элвина Кларка. На данный момент он остаётся самым большим рефракторным телескопом из когда-либо использовавшихся. Любопытно, что мастера фирмы Кларк тонкую шлифовку выполняли вручную, подгоняя отдельные части объектива под нужную форму. Эта мучительная работа, требующая огромного терпения и мастерства, заняла пять лет. Зато был достигнут рекорд. Возможно, что здесь уже достигнут разумный предел. Объективы с поперечником более 40 дюймов должны быть слишком толстыми и потому поглощающими много света. Кроме того, под влиянием огромного собственного веса они прогибаются и по этой причине портятся создаваемые ими изображения.

Нет смысла побивать рекорды Альвана Кларка и по другим причинам. Длиннофокусные рефракторы типа Йеркского или Ликского обладают очень большим вторичным спектром и фотосъемка с их помощью дает расплывчатые изображения. Неудобны они и для спектральных и для астрометрических наблюдений - с меньшими инструментами получаются лучшие результаты. Видимо, рефракторы достигли «потолка» и будущее не за ними.

1


Это крупнейший из когда-либо созданных телескопов-рефракторов. Он был создан специально для экспозиции на Всемирной выставке в Париже 1900 года. В качестве астрономического инструмента телескоп практически не использовался. По окончании выставки демонтирован и разобран.

Диаметр двухлинзового объектива- ахромата составлял 1,25 м, фокусное расстояние- 57 метров. Длина трубы превышала 60 метров. Объектив предназначался для визуальных наблюдений, а для работы в качестве астрографа он мог быть заменён другим объективом, исправленным для фотографических наблюдений. По причине значительной массы объектива и длины трубы установка телескопа на традиционной экваториальной монтировке представлялась невозможной, и было решено установить телескоп неподвижно и горизонтально. Наведение на небесные объекты осуществлялось с помощью отдельного сидеростата (плоского поворотного зеркала диаметром два метра, отражавшего свет в неподвижный объектив). Фокусировка осуществлялась подвижкой окулярной части по направляющим рельсам. При увеличении 500х угловое поле зрения инструмента составляло 3 угловых минуты.

К сожалению, это великолепное творение постиг печальный конец. Компания, организованная для строительства телескопа в 1886 году, объявила о банкротстве сразу по окончании выставки. В 1909 г. телескоп выставили на аукцион. Покупателя не нашлось, и телескоп разобрали на слом. Зеркало сидеростата выставлено в Парижской обсерватории как часть исторической экспозиции; два объектива, упакованные в ящики, хранятся там же, в подвальных помещениях.

March 23rd, 2018

Телескоп «Джеймс Уэбб» — это орбитальная инфракрасная обсерватория, которая должна заменить тот самый знаменитый космический телескоп «Хаббл». «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре и стоить около 6.8 млрд долларов. Для сравнения, диаметр зеркала «Хаббла» — «всего» 2.4 метра.

Работа над его идет около 20 лет! Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года. Потом объявили о запуске в 2018, но по последним сведениям телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года.

Давайте посмотрим как собирали это уникальное устройство:


Сама система очень сложная, ее собирают поэтапно, проверяя работоспособность многих элементов и уже собранной конструкции в ходе каждого этапа. Начиная с середины июля телескоп стали проверять на работоспособность при сверхнизких температурах — от 20 до 40 градусов Кельвина. В течение нескольких недель тестировалась работа 18 главных зеркальных секций телескопа для того, чтобы убедиться в возможности их работы в качестве единого целого. Диаметр составного зеркала телескопа равен 6,5 метров.

Позже, после того, как оказалось, что все хорошо, ученые проверили систему ориентирования, эмулируя свет далекой звезды. Телескоп смог обнаружить этот свет, все оптические системы работали в штатном режиме. Затем телескоп смог определить местоположение «звезды», отследив ее характеристики и динамику. Ученые убедились, что в космосе телескоп будет работать вполне корректно.

Телескоп «Джеймс Уэбб» должен быть размещен на гало-орбите в точке Лагранжа L2 системы Солнце — Земля. А в космосе холодно. Здесь показаны испытания, проводимые 30 марта 2012, направленные на изучение возможности противостоять холодным температурам пространства. (Фото Chris Gunn | NASA):

в 2017 году телескоп «Джеймс Уэбб» опять провел в экстремальных условиях. Его поместили в камеру, температура в которой достигала всего 20 градусов Цельсия выше абсолютного нуля. Кроме того, в этой камере не было воздуха — ученые создали вакуум для того, чтобы поместить телескоп в условия открытого космоса.

«Теперь мы убедились в том, что НАСА и партнеры агентства создали отличный телескоп и набор научных инструментов», — заявил Билл Очс, руководитель проекта «Джеймс Уэбб» в Центре космических полетов имени Годдарда.

«Джеймс Уэбб» будет обладать составным зеркалом 6.5 метров в диаметре с площадью собирающей поверхности 25 м². Много это, или мало? (Фото Chris Gunn):

Но и это еще не все, телескопу предстоит пройти еще много проверок, прежде, чем его признают полностью готовым к отправке. Недавние тесты показали, что устройство может работать в вакууме при сверхнизких температурах. Именно такие условия царят в точке L2 Лагранжа в системе Земля-Солнце.

В начале Февраля «Джеймс Уэбб» перевезут в Хьюстон, где он будет помещен в самолет Локхид C-5 «Гэлэкси». На борту этого гиганта телескоп полетит в Лос-Анжелес, где его соберут окончательно, смонтировав солнцезащитный экран. Ученые после этого проверят, работает ли вся система с таким экраном, и нормально ли выдерживает устройство вибрации и нагрузки в ходе полета.

Сравним с «Хабблом». Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе:

4. Полномасштабная модель космического телескопа Джеймса Уэбба в Остине, штат Техас, 8 марта 2013. (Фото Chris Gunn):



5. Проект телескопа представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств. (Фото Chris Gunn):



6. Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года.(Фото Chris Gunn):



7. Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6.5 метра, чтобы измерить свет от самых далёких галактик.


Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади. (Фото Chris Gunn):



8. Не только у нас всё дорожает от начальной сметы. Так, стоимость телескопа «Джеймс Уэбб» превысила изначальные расчёты по меньшей мере в 4 раза. Планировалось, что телескоп обойдётся в 1,6 млрд долл. и будет запущен в 2011 году, однако по новым оценкам стоимость может составить 6.8 млрд, но уже есть сведения о превышении и этого лимита до 10 млрд. (Фото Chris Gunn):



9. Это спектрограф ближнего инфракрасного диапазона. Он будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. (Фото Chris Gunn):





Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря «Джеймсу Уэббу» ожидается настоящий прорыв в экзопланетологии — возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет.


11. Инженеры тестируют в камере. систему подъема телескопа, 9 сентября 2014. (Фото Chris Gunn):



12. Исследование зеркал, 29 сентября 2014. Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой — для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области. (Фото Chris Gunn):



13. Очистка зеркала сухим льдом из двуокиси углерода. Тряпками здесь никто не трет. (Фото Chris Gunn):



14. Камера A — это гигантская испытательная камера с вакуумом, которая будет моделировать космическое пространства при испытаниях телескопа «Джеймса Уэбба», 20 мая 2015. (Фото Chris Gunn):







17. Размер каждого из 18 шестигранных сегментов зеркала составляет 1.32 метра от ребра до ребра. (Фото Chris Gunn):



18. Масса непосредственно самого́ зеркала в каждом сегменте — 20 кг, а масса всего сегмента в сборе — 40 кг. (Фото Chris Gunn):



19. Для зеркала телескопа «Джеймса Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1.3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента. (Фото Chris Gunn):



20. Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку. (Фото Chris Gunn):



21. По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6—29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах. (Фото Chris Gunn):



22. Работа над телескопом в ноябре 2016 года. (Фото Chris Gunn):



23. НАСА завершило сборку космического телескопа «Джеймс Уэбб» в 2016 году и приступило к его испытаниям. Это снимок от 5 марта 2017 года. На длинной выдержке техники выглядят призраками. (Фото Chris Gunn):







26. Дверь в ту самую камеру А с 14-й фотографии, в которой моделируется космическое пространство. (Фото Chris Gunn):





28. Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года. Отвечая на вопрос о том, что ученые ожидают узнать с помощью нового телескопа, ведущий научный сотрудник проекта Джон Мэтер сказал: «Надеюсь, мы найдем что-то, о чем никто ничего не знает». (Фото Chris Gunn):


«Джеймс Уэбб» очень сложная система, которая состоит из тысяч отдельных элементов. Они формируют зеркало телескопа и его научные инструменты. Что касается последних, то это такие устройства:

Камера ближнего инфракрасного диапазона (Near-Infrared Camera);
- Прибор для работы в среднем диапазоне инфракрасного излучения (Mid-Infrared Instrument);
- Спектрограф ближнего инфракрасного диапазона (Near-Infrared Spectrograph);
- Датчик точного наведения c устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом (Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph).

Очень важно защитить телескоп экраном, который закроет его от Солнца. Дело в том, что именно благодаря этому экрану «Джеймс Уэбб» сможет обнаружить даже очень слабый свет самых удаленных звезд. Для развертывания экрана создана сложная система из 180 разных устройств и других элементов. Размеры его составляют 14*21 метр. «Это заставляет нас нервничать», — признал глава проекта разработки телескопа.

Основными задачами телескопа, который сменит в строю «Хаббл» являются: обнаружение света первых звёзд и галактик, сформированных после Большого взрыва, изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также «Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало.

источники

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем . Ученый, основываясь на слухах об изобретении голландцами зрительной трубы, разгадал ее устройство и изготовил образец, который впервые использовал для космических наблюдений. Первый телескоп Галилея имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение.Но позволил сделать целую серию замечательных открытий: обнаружить четыре спутника планеты Юпитер , фазы Венеры , пятна на Солнце, горы на поверхности Луны, наличие у диска Сатурна придатков в двух противоположных точках.

Прошло более четырехсот лет - на земле и даже в космосе современные телескопы помогают землянам заглянуть в далекие космические миры. Чем больше диаметр зеркала телескопа, тем мощнее оптическая установка.

Многозеркальный телескоп

Расположен на горе Маунт-Хопкинс, на высоте 2606 метров над уровнем море, в штате Аризона в США . Диаметр зеркала этого телескопа – 6,5 метров . Этот телескоп был построен еще в 1979 году. В 2000 году он был усовершенствован. Многозеркальным он называется, потому что состоит из 6 точно подогнанных сегментов, составляющих одно большое зеркало.


Телескопы Магеллана

Два телескопа, “Магеллан -1″ и “Магеллан-2″, находятся в обсерватории “Лас-Кампанас” в Чили , в горах, на высоте 2400 м, диаметр их зеркал 6,5 м у каждого . Телескопы начали работать в 2002 году.

А 23 марта 2012 года начато строительство еще одного более мощного телескопа «Магеллан» - «Гигантского Магелланова Телескопа», он должен вступить в строй в 2016-м. А пока взрывом была снесена вершина одной из гор, чтобы расчистить место для строительства. Гигантский телескоп будет состоять из семи зеркал по 8,4 метра каждое, что эквивалентно одному зеркалу диаметром 24 метра, за это его уже прозвали “Семиглаз”.


Разлученные близнецы телескопы «Джемини»

Два телескопа-брата, каждый из которых расположен в другой части света. Один – «Джемини север» стоит на вершине потухшего вулкана Мауна-Кеа на Гавайях , на высоте 4200 м. Другой – «Джемини юг», находится на горе Серра-Пачон (Чили) на высота 2700 м.

Оба телескопа идентичны, диаметры их зеркал составляют 8,1 метра , построены они в 2000 г. и принадлежат обсерватории «Джемини». Телескопы расположены на разных полушариях Земли, чтобы было доступно для наблюдения все звездное небо. Системы управления телескопами приспособлены для работы через интернет, поэтому астрономам не приходится совершать путешествия к разным полушариям Земли. Каждое из зеркал этих телескопов составлено из 42 шестиугольных фрагментов, которые были спаяны и отполированы. Эти телескопы созданы по самым совершенным технологиям, что делает обсерваторию «Джемини» одной из передовых астрономических лабораторий на сегодняшний день.


Северный "Джемини" на Гаваях

Телескоп «Субару»

Этот телескоп принадлежит Японской Национальной Астрономической Обсерватории. А расположен на Гавайях, на высоте 4139 м, по соседству с одним из телескопов «Джемини». Диаметр его зеркала – 8,2 метра . «Субару» оснащенкрупнейшим в мире «тонким» зеркалом.: его толщина – 20 см., его вес - 22,8 т. Это позволяет использовать систему приводов, каждый из которых передает свое усилие на зеркало, придавая ему идеальную поверхность в любом положении, что позволяет добиться самого лучшего качества изображения.

С помощью этого зоркого телескопа была открыта самая далекая из известных на сегодняшний день галактик, расположенная на расстояние 12,9 млрд. св. лет, 8 новых спутников Сатурна, сфотографированы протопланетные облака.

Кстати, «субару» по-японски значит «Плеяды» - название этого красивейшего звездного скопления.


Японский телескоп "Субару" на Гаваях

Телескоп Хобби-Эберли (НЕТ)

Расположен в США на горе Фолкс, на высоте 2072 м, и принадлежит обсерватории Мак-Дональд. Диаметр его зеркала около 10 м . Несмотря на внушительные размеры, Хобби-Эберли обошелся своим создателям всего в 13,5 млн. долларов. Сэкономить бюджет удалось благодаря некоторым конструктивным особенностям: зеркало у этого телескопа не параболическое, а сферическое, не цельное – состоит из 91 сегмента. К тому же зеркало находится под фиксированным углом к горизонту (55°) и может вращаться только на 360° вокруг своей оси. Все это значительно удешевляет конструкцию. Специализируется этот телескоп на спектрографии и успешно используется для поиска экзопланет и измерения скорости вращения космических объектов.


Большой южноафриканский телескоп (SALT)

Принадлежит Южно-африканской Астрономической Обсерватории и находится в ЮАР , на плато Кару , на высоте 1783 м. Размеры его зеркала 11х9,8 м . Оно крупнейшее в Южном полушарии нашей планеты. А изготовлено в России , на «Лыткаринском заводе оптического стекла». Этот телескоп стал аналогом телескопа Хобби-Эберли в США. Но был модернизирован – откорректирована сферическая аберрация зеркала и увеличено поле зрения, благодаря чему кроме работы в режиме спектрографа, этот телескоп способен получать прекрасные фотографии небесных объектов с большим разрешением.


Самый большой телескоп в мире ()

Стоит на вершине потухшего вулкана Мучачос на одном из Канарских островов, на высоте 2396 м. Диаметр главного зеркала – 10,4 м . В создании этого телескопа принимали участие Испания , Мексика и США. Между прочим, этот интернациональный проект обошелся в 176 млн. долларов США, из которых 51% заплатила Испания.

Зеркало Большого Канарского Телескопа, составленное из 36 шестиугольных частей – крупнейшее из существующих на сегодняшний день в мире. Хотя это и самый большой телескоп в мире по размеру зеркала, нельзя назвать его самым мощным по оптическим показателям, так как в мире существуют системы, превосходящие его по своей зоркости.


Расположен на горе Грэхем, на высоте 3,3 км, в штате Аризона (США). Этот телескоп ринадлежит Международной Обсерватории Маунт-Грэм и строился на деньги США, Италии и Германии . Сооружение представляет собой систему из двух зеркал диаметром по 8,4 метра, что по светочувствительности эквивалентно одному зеркалу диаметром 11,8 м . Центры двух зеркал находятся на расстоянии 14,4 метра, что делает разрешающую способность телескопа эквивалентной 22-метровому, а это почти в 10 раз больше, чем у знаменитого космического телескопа "Хаббла". Оба зеркала Большого Бинокулярного Телескопа являются частью одного оптического прибора и вместе представляют собой один огромный бинокль – самый мощный оптический прибор в мире на данный момент.


Телескопы Вильяма Кека

Keck I и Keck II – еще одна пара телескопов-близнецов. Располагаются по соседству с телескопом «Субару» на вершине гавайского вулкана Мауна-Кеа (высота 4139 м). Диаметр главного зеркала каждого из Кеков составляет 10 метров - каждый из них в отдельности является вторым по величине в мире телескопом после Большого Канарского. Но эта система телескопов превосходит Канарский по «зоркости». Параболические зеркала этих телескопов составлены из 36 сегментов, каждый из которых снабжен специальной опорной системой, с компьютерным управлением.Атакама в горном массиве чилийских Анд, на горе Параналь, 2635 м над уровнем моря. И принадлежит Европейской Южной Обсерватории (ESO), включающей в себя 9 европейских стран.

Система из четырех телескопов по 8,2 метра, и еще четырех вспомогательных по 1,8 метра по светосиле эквивалентна одному прибору с диаметром зеркала 16,4 метра.

Каждый из четырех телескопов может работать и отдельно, получая фотографии, на которых видны звезды до 30-й звездной величины. Все телескопы сразу работают редко, это слишком затратно. Чаще каждый из больших телескопов работает в паре со своим 1,8 метровым помощником. Каждый из вспомогательных телескопов может двигаться по рельсам относительно своего «большого брата», занимая наиболее выгодное для наблюдения данного объекта положение. Очень Большой Телескоп – самая продвинутая астрономическая система в мире. На нем была сделана масса астрономических открытий, например, было получено первое в мире прямое изображение экзопланеты.

Диаметр его зеркала только 2,4 м, что меньше самых больших телескопов на Земле. Но из-за отсутствия влияния атмосферы, разрешающая способность телескопа в 7 - 10 раз больше аналогичного телескопа, расположенного на Земле . «Хаббл» принадлежит множество научных открытий: столкновение Юпитера с кометой, изображение рельефа Плутона , полярные сияния на Юпитере и Сатурне...

Но цена, которую приходится платить за достижения «Хаббла» весьма высока: стоимость содержания космического телескопа выше в 100 раз, чем наземного рефлектора с 4-метровым зеркалом.


Телескоп "Хаббл" на земной орбите

За последние 20-30 лет спутниковая антенна стала неотъемлемым атрибутом в нашей жизни. Множество современных городов имеют доступ к спутниковому телевидению. Массово-популярными спутниковые тарелки стали в начале 1990-х. Для таких антенн-тарелок, используемых, в качестве радио-телескопов для получения информации с разных уголков планеты, размер действительно имеет значение. Вашему вниманию представляются десять самых больших телескопов на Земле, расположенных в самых больших обсерваториях мира

10 Спутниковый телескоп Стэнфорда, США

Диаметр: 150 футов (46 метров)

Расположен в предгорьях Стэнфорда, Калифорния, радио-телескоп, известный, как тарелка-достопримечательность. Его посещают приблизительно 1 500 человек каждый день. Построенный Стэнфордским Научно-исследовательским институтом в 1966, в 150 футов диаметром (46 метров) радио-телескоп был первоначально предназначен для исследования химического состава нашей атмосферы, но, с такой сильной радарной антенной, позже использовался для коммуникации со спутниками и космическими кораблями.


9 Обсерватория Алгонкин, Канада

Диаметр: 150 футов (46 метров )

Эта обсерватория находится в провинциальном парке Алгонкин в Онтарио, Канада. Главная центральная часть обсерватории - 150-футовая (46 м) параболическая тарелка, о которой стало известно в 1960-м году в период ранних технических тестов VLBI. VLBI учитывает одновременные наблюдения за многими телескопами, которые объединены между собой.

8 Большой Телескоп LMT, Мексика

Диаметр: 164 фута (50 метров)

Большой Телескоп LMT является относительно недавним дополнением к списку самых больших радиотелескопов. Построенный в 2006, этот 164-футовый (50 m) инструмент представляет собой лучший телескоп для того, чтобы посылать радиоволны в его собственном частотном диапазоне. Предоставляя астрономам ценную информацию относительно звездного формирования, LMT расположен в горной цепи Негра - это пятая по высоте гора в Мексике. Это объединенный мексиканский и американский проект обошелся в $116 миллионов.


7 Обсерватория Паркса, Австралия

Диаметр: 210 футов (64 метра)

Постройка была закончена в 1961 году, Обсерватория Паркса в Австралии была одной из нескольких, используемых чтобы передавать телевизионные сигналы в 1969 году. Обсерватория предоставляла НАСА ценную информацию во время их лунных миссий, передавая сигналы и предоставляя необходимую помощь, когда наш единственный естественный спутник был на австралийской стороне Земли. Больше 50-и процентов известных пульсаров -нейтронных звезд - были обнаружены в Парксе.


6 Авантюриновый Коммуникационный Комплекс, США

Диаметр: 230 футов (70 метров)

Известный, как Авантюриновая Обсерватория, этот комплекс расположен в Пустыне Мохаве, Калифорния. Это один из 3-х подобных комплексов - другие два расположены в Мадриде и Канберре. Авантюрин известен, как антенна Марса, которая составляет 230 футов (70 м) в диаметре. Этот очень чувствительный радио-телескоп - который был фактически смоделирован и позже модернизирован, чтобы быть больше чем, тарелка из Обсерватории Паркса Австралии, и предоставлять больше информации, которая поможет в картографии квазаров, комет, планет, астероидов и многих других небесных тел. Авантюриновый комплекс также доказал свою ценность в поиске высокоэнергетических передач нейтрино на луне.

5 Евпатория, Радио-Телескоп RT-70, Украина

Диаметр: 230 футов (70 метров)

Телескоп в Евпатории использовался, чтобы обнаруживать астероиды и космический мусор. Именно отсюда 9 октября 2008 года был отправлен сигнал к планете Gliese 581c под названием "Суперземля". Если Gliese 581населена разумными существами, возможно они пошлют нам обратный сигнал! Однако, мы должны будем ждать, пока сообщение достигает планеты в 2029 году

4 Телескоп Ловелл, Великобритания

Диаметр: 250 футов (76 метров)

Ловелл - Телескоп Соединенного Королевства, расположен в Обсерватории Джорделл-Бэнк на северо-западе Англии. Построенный в 1955, он был назван в честь одного из создателей, Бернарда Ловелла. Среди самых известных достижений телескопа было подтверждение существования пульсара. Телескоп также способствовал открытию квазаров.


3 Эффельсберг Радио-Телескоп в Германии

Радиотелескоп Эффельсберг расположен в западной Германии. Построенный в период между 1968 и 1971, телескоп находится в распоряжении Института Радиоастрономии Макса Планка, в Бонне. Оборудованный, чтобы наблюдать за пульсарами, звездными формированиями и ядрами отдаленных галактик, Эффельсберг - один из самых важных в мире суперсильных телескопов.

2 Зеленый Телескоп Банка, США

Диаметр: 328 футов (100 метров)

Зеленый Телескоп Банка расположен в Западной Вирджинии, в центре Национальной Тихой Зоны Соединенных Штатов - это область ограниченных или запрещенных радио-передач, который очень помогает телескопу в достижении его самого высокого потенциала. Телескоп, который был закончен в 2002 году, строился в течении 11 лет.

1. Обсерватория Аресибо, Пуэрто-Рико

Диаметр: 1 001 фут (305 метров)

Самый большой телескоп на Земле безусловно находится в Обсерватории Аресибо (Arecibo) близ одноименного города в Пуэрто-Рико. Управляемая SRI International - научно-исследовательским институтом от Стэнфордского университета, Обсерватория участвует в радиоастрономии, радарных наблюдениях за солнечной системой и в исследовании атмосфер других планет. Огромная тарелка была построена в 1963 году.